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Abstract. A model producing behavior mimicking that of a homing
desert ant while approaching the nest along a habitual route is presented.
The model combines two strategies that interact with each other: local
vector navigation and landmark guidance with an average landmark vec-
tor. As a multi-segment route with several waypoints is traversed, local
vector navigation is mainly used when leaving a waypoint, landmark
guidance is mostly used when approaching a waypoint, and a weighted
interplay of the two is used in between waypoints. The model comprises
a spiking neural network that is developed based on the principles of the
Neural Engineering Framework. Its performance is demonstrated with a
simulated robot in a virtual environment, which is shown to successfully
navigate to the final waypoint in different scenes.
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1 Introduction

Desert ants are solitary foragers, which exhibit amazing navigational skills [15].
When searching for food, they can go as far as 200 m away from their nest
in relatively featureless terrain and then reliably return home [9]. Unlike other
ants, however, these ants do not use pheromones to mark their trails because
due to the high desert temperatures, those would evaporate too quickly. Conse-
quently, despite their miniature brains, desert ants have developed a number of
sophisticated mechanisms, including path integration and landmark guidance, to
meet their navigational demands [9,15]. Moreover, they utilize different strate-
gies depending on whether they are in familiar or unfamiliar terrain and whether
the environment is mostly featureless or cluttered [14], which altogether has made
them become model organisms for studying insect navigation [15].

Although much has been discovered about these mechanisms and strategies
in recent years, the neural substrate is still largely unknown [1,9]. Here, we
present a model using a spiking neural network (SNN) developed based on the
principles of the Neural Engineering Framework (NEF), which produces behavior
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similar to that of a homing ant approaching the nest along a habitual route. We
demonstrate the performance of the model using a simulated robot in a virtual
environment.

The rest of the paper is structured as follows: Sect. 2 provides an overview
of desert ant navigation, Sect. 3 introduces the Neural Engineering Framework,
the proposed model is described in Sect. 4 and preliminary results obtained from
the model are presented in Sect. 5, and the final Sect. 6 is devoted to discussion
and conclusions.

2 Desert Ant Navigation

Desert ants employ several strategies for navigation: path integration (also
termed vector navigation), landmark guidance, and systematic search [15]. These
strategies are utilized adaptively depending on the actual circumstances and
interact with one another [15]. Path integration requires combining compass
information, which is mainly provided by the polarization compass mechanism,
with odometer information, which is mostly based on the pedometer mecha-
nism (i.e., counting steps) and to a much lesser extent exploits optic flow [15].
Importantly, vector navigation can be broken down into global and local vector
navigation: the global vector, obtained through integration of directions taken
and distances covered since leaving the nest, maintains a continuously updated
estimate of the direction and distance to the nest from the current location,
whereas local vectors are associated with particular locations in the environ-
ment and store direction to the next waypoint on the route [6]. The next strategy,
landmark guidance, involves “labeling” places using visual landmarks observed
at these places from particular vantage points [14]. Those stored views can be
later recalled to guide the ant to the corresponding places, using view-matching
mechanisms that are retinotopically organized [14]. Several methods for such
view-matching mechanisms have been proposed, the snapshot model being the
canonical one, and its various variants such as the average landmark vector
model later derived from it [9]. In the snapshot model, the current retinal image
is compared with a stored one in terms of apparent sizes and bearings of indi-
vidual landmarks, without the need for actual identification of the landmarks
themselves, and the resulting differences collectively determine movement aimed
at reducing the mismatch such that the two images coalesce. The average land-
mark vector (ALV) model is a parsimonious version, in which it is not individual
landmarks that are compared, but average vectors defined by those landmarks
all together. In other words, bearings to all landmarks in the view are lumped
into a single two-dimensional ALV and only the ALVs of the current and stored
views are compared [9]. Finally, systematic search strategy is employed when
the ant has arrived close to the nest using its path integrator, but due to the
inevitable cumulative errors in integration it is not exactly where it should be
and thus begins to systematically search the vicinity of its current location to find
the nest entrance. This strategy is mostly exploited in featureless terrain, where
landmarks and view-matching mechanisms cannot be used for precise guidance
to the nest [15].



A Spiking Model of Desert Ant Navigation Along a Habitual Route 213

When traveling over larger areas in featureless terrain, desert ants can rely
only on the global vector navigation; on the other hand, in cluttered environ-
ments navigation using landmarks can override the global vector navigation,
although path integration is continuously carried out [14]. Routes that are fol-
lowed many times can become habitual; in such cases ants learn sequences of
landmark scenes along the route and associate them with remembered heading
directions (i.e., local vectors) [5,6], effectively partitioning the route into sepa-
rate successive segments that can point in different directions [6]. Recognizing a
particular scene triggers the associated local vector, which guides the ant to the
visual catchment area of the next waypoint on the route [14]. An ant can store in
its memory a number of routes and retrieve these memories correctly according to
the current context [15]. However, this traditional approach to navigation along
habitual routes has recently been challenged by a different, “view-familiarity”
model, which postulates that the purpose of the movement aimed at aligning
the current view with a stored one is not to ensure arrival at the correspond-
ing waypoint, but rather to orient the ant in the correct direction for forward
motion that will follow; thus, in the “view-familiarity” approach local vectors
are actually eliminated [2].

To explain how navigation in desert ants is organized from the computa-
tional perspective, a number of models have been proposed, including those
addressing homing in on a single goal using view-matching methods based on
local landmarks [9], those concerning long-range navigation employing waypoints
linked in a sequence and approached using view-matching methods [11], those
concerning long-range navigation without explicit waypoints and using “view-
familiarity” approach along with rotational scanning [1,2], and those dealing
with long-range navigation combining global and local vectors [7]; some of these
models also implemented learning [1,2,11], utilized spiking neural networks [1],
and were even applied to real robotic platforms [9,11].

3 Neural Engineering Framework

To create our SNN model, we used the Neural Engineering Framework [8]. This is
a method for taking a high-level description of a desired algorithm and converting
it into a set of spiking neurons that approximate that algorithm. In our case,
we used standard Leaky Integrate-and-Fire neurons, connected with exponential
synapses.

In the NEF, an algorithm is defined in terms of variables and functions on
those variables. Variables are represented in a distributed manner by groups
of neurons. For example, a group of 100 neurons may encode a 2-dimensional
numerical value (such as the x and y coordinates of a local vector) in their firing
pattern. Each neuron within this group has some particular preferred value for
which it will fire the fastest. For the model discussed here, we choose these
preferred stimuli (and thus the “tuning curve” for the neuron) randomly, but
in future work it would be constrained based on neural data. The NEF also
specifies the inverse operation, decoding variables, that is recovering their values
from the observed firing patterns.
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To implement a particular algorithm, the NEF forms connections between
groups of neurons. Consequently, whenever two groups of neurons are connected,
we define the numerical function that we want to have computed. For example,
if one group of neurons represents x, y components of the velocity command and
we have another group of neurons that we want to represent the steering angle θ,
then we want to connect these two groups of neurons such that θ = tan−1(y/x).
The NEF provides a method for finding the synaptic connection weights between
these two groups of neurons that best approximate this function. That is, if there
are 100 neurons in the first group and 100 neurons in the second group, the NEF
generates a 100×100 matrix such that, if the first group of neurons is stimulated
with the pattern of activity for any x, y value, the second group will be driven
to fire with the correct corresponding θ value.

Of course, these neurons will only approximate the desired function. In order
to determine the actual behavior of the system, given this approximation (and
given the variability caused by the spiking neuron activity itself), we need to
run the neural system and observe its behavior. To do this, we use the software
toolkit Nengo [3], which also includes a built-in implementation of the NEF
methods.

Given this framework, everything in the model must be described as contin-
uous real-valued variables and functions on those variables (The NEF also uses
recurrent connections, which can approximate differential equations on those
variables.) However, this means that it is not obvious how to implement discrete
items in such a framework. For example, how can we have one group of neurons
representing which waypoint the ant has reached most recently? For this, we
take the approach of claiming that the neurons in this group represent some
high-dimensional vector space (e.g., 32 dimensions), and we randomly choose
points in that space to represent each waypoint. In other words, each waypoint
is assigned a particular randomly chosen 32-dimensional vector. With this app-
roach, symbol-like functions can be implemented with the NEF. For example,
we can define a function where the input is the 32-dimensional vector represent-
ing which waypoint has been reached most recently, and the output is the next
waypoint.

4 Model

Our SNN model is based on the classic approach that combines view-matching
recognition of subsequent waypoints along a habitual route with expression of
local vectors guiding to the visual catchment area of the successive waypoint.
Rather than using the original snapshot model to implement the view-matching
mechanism, we utilize the ALV model for this purpose. The SNN is coupled in a
closed-loop manner to a simulated robot in a virtual environment and controls
its movement. The robot model is based on the popular robot platform Pioneer
P3-DX and is simulated using V-REP simulator [10].

In our model, only the critical parts of the whole system are implemented
neurally, with the remaining components being computed numerically. In partic-
ular, we do not implement the neural circuitry of the ant compass and odometer
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Fig. 1. Diagram of the model

mechanisms; instead, robot position and orientation are obtained directly from
the simulator, while distance traveled from the previous waypoint is computed
explicitly. Also, vision is not implemented, but substituted with direct calcula-
tions of ALVs based on the current robot pose and the position of landmarks
within a predefined range. Finally, learning the habitual route is not considered;
all the waypoints as well as the local vectors and ALVs associated with them are
predetermined.

Figure 1 shows a diagram of the model. Rectangular boxes represent compo-
nents of the system, while rounded boxes depict information that is computed
by or transmitted between components. Bold italic font in rectangular boxes
indicates that the corresponding components perform computations explicitly,
to distinguish them from those that are implemented neurally.

There are two inputs to the system: vision and path integration. Vision
obtains from the simulator positions of landmarks that are within the predefined
range from the robot and calculates the currently perceived ALV in egocentric
coordinates. Path integration obtains from the simulator robot current posi-
tion and orientation and computes distance covered from the previously reached
waypoint.
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The neural part of the model can be divided into two subsystems, which
partially overlap: one that controls robot velocity using local vector navigation
and landmark guidance, and the other one that is responsible for keeping track of
which waypoint has most recently been reached as well as detecting arrival at the
next waypoint. The central element to both subsystems is the working memory
that maintains a memory trace, represented in the form of a high-dimensional
(HD) vector, of the previously reached waypoint.

In the case of the subsystem controlling robot velocity, information about
the previously reached waypoint is delivered to three components: (1) the path
integrator, so that it could properly keep track of the distance covered from
the most recent waypoint; (2) the local vector associative memory, which stores
associations between each waypoint on the route and the corresponding local
vector leading from that waypoint to the next waypoint; and (3) the waypoint
associative memory, which stores associations pairing each waypoint with its
successor. The output of the waypoint associative memory, that is a HD vector
representing the next waypoint, is subsequently conveyed to the ALV associative
memory, which stores associations between each waypoint and the ALV observed
at that waypoint. Consequently, this path in the model leads to retrieval of the
ALV associated with the next waypoint, which is then supplied to the ALV com-
parator. The other input to this comparator is the current ALV that the robot is
perceiving, which comes from the visual system, and thus the difference between
the two ALVs is determined. At the same time, the local vector pointing to the
next waypoint is obtained as the output from the local vector associative mem-
ory, and subsequently both the ALV difference and the local vector are combined
with appropriate gain adjustments into a single velocity command in the velocity
controller, which finally translates this command into motor commands for the
robot wheels.

Gain adjustments applied to the ALV difference and to the local vector are
a very important element in the model. Its purpose is to differentially weight
contributions of the two signals depending on how far the robot has moved away
from the previous waypoint and thus how close it has possibly come to the
next one. Specifically, if the robot is near the previous waypoint, its velocity is
mostly determined by the local vector associated with that previous waypoint
and pointing to the next one; in turn, when the robot is far off from the previous
waypoint and hence likely approaches the next one, it is the ALV difference
that mainly dictates velocity. This design allows the robot to properly home in
on the next waypoint while avoiding possibly detrimental confusion while going
past a waypoint. Indeed, when the robot is leaving a waypoint that has just been
reached in pursuit for the next one, landmarks belonging to that just reached
waypoint are still visible and thus may confound the ALV difference, resulting
in wrong velocity signals.

The other neural subsystem, which keeps track of which waypoint has most
recently been reached and detects arrival at the next waypoint, shares some com-
ponents with its counterpart controlling the robot velocity. Because detection of
arrival at a waypoint is based on a threshold mechanism, the ALV difference
determined by the ALV comparator is monitored by the threshold detector,
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which, when appropriate, triggers the action selection circuitry to update the
working memory of the most recently reached waypoint. However, like in the
case of velocity control, also in this process is the ALV difference subject to gain
adjustment. The goal of this adjustment is to prevent another detrimental con-
fusion that may arise when the ALV associated with the just-reached waypoint
is very similar to that of the next waypoint. This confusion may occur because
arrival at a waypoint makes the robot stop comparing the currently perceived
ALV with that of the just-reached waypoint and start comparing it with that of
the next waypoint, yet since at this moment the current ALV is almost identical
to that of the just-reached waypoint, high similarity between the ALVs of the
just-reached and of the next waypoints results in the current ALV being similar
to that of the next waypoint as well. Consequently, the difference between the
current ALV and the ALV of the next waypoint may happen to be below the
threshold, which, if not adjusted, would in turn cause the robot to erroneously
conclude that the next waypoint has also been reached, although the robot has
even not left the previous one. To prevent such a misinterpretation, a negative
gain is added to the ALV difference upon arrival at a waypoint, and then is pro-
gressively removed as the robot moves away from that waypoint until vanishing
completely prior to approaching the next waypoint.

Because in vertebrates travel along a habitual route appears to be mediated
by the basal ganglia [5], to implement the action selection circuitry we used the
spiking model of the basal ganglia readily available in Nengo [12]. Obviously, the
basal ganglia do not exist in ants, but since there is evidence suggesting that
the central complex can be regarded as their homologue in arthropods [13], we
adopted this approach as a first approximation. Consequently, the basal ganglia
inhibit the connection between the waypoint associative memory and the working
memory of the previous waypoint whenever the adjusted ALV difference is above
the threshold, and only when this difference falls below the threshold does this
connection become disinhibited. The result of disinhibition is that the output of
the waypoint associative memory, that is the HD vector representing the next
waypoint, which in this particular moment corresponds to the waypoint that has
just been reached, overrides the current HD vector stored in the working memory
of the previous waypoint, and thus appropriate update of the latter memory is
achieved.

Finally, there are two additional suppression mechanisms employed in the
model, which are activated when there are no landmarks in view. In such a case,
the current ALV is undetermined, and therefore appropriate suppression of the
gain controller cancels the contribution of the ALV difference to the velocity
command, effectively making the robot steering depend only on the local vec-
tor, while similar suppression of the threshold detector prevents a possible false
detection of arrival at the next waypoint.

5 Results

Figure 2 presents routes followed by the robot in two example scenes. Both routes
consist of two segments, and therefore each scene contains three waypoints: the
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start one, which is in the upper right quadrant, the intermediate one, close to the
middle, and the final one, close to the bottom. The start and the intermediate
waypoints are depicted as orange circles, while the final waypoint is depicted as
the red circle. The intermediate and final waypoints are surrounded by landmarks
represented as green circles. Importantly, the robot does not know the locations
of the waypoints; it only knows the ALVs associated with these waypoints and
can perceive the landmarks. Moreover, at the beginning of simulations, it is not
heading towards the intermediate waypoint, but is somewhat rotated to either
side. The dark blue lines show the routes followed by the robot. As can be seen,
the robot first goes to the intermediate waypoint, which requires an appropriate
turn at the start location, and then turns accordingly and proceeds to the final
waypoint. During the initial part of each segment of the routes, the robot is
mainly driven by the corresponding local vector, while during the end part of
each segment, it is mostly driven by the ALV difference. As a result, some minor
turns appear in the second parts of the segments, which manifest corrections
imposed by the ALV difference on the original directions taken at the beginning
of the segments. Moreover, even if the robot does not home in precisely on the
intermediate waypoint due to inherent noise in the SNN or imprecision of the
ALV model, which can result in a direction slightly off from the optimal one
during the beginning of the next segment, as is the case for the right scene, it
can still reliably reach the final waypoint.

Some aspects of the model dynamics for the robot following the route in
the right scene are presented in Fig. 3. The first plot shows distances to each
waypoint over time. The second plot is a raster representing activity of a sam-
ple of 50 neurons in the working memory maintaining the trace of the previous
waypoint. Evidently the pattern of activity changes when the robot reaches the
intermediate waypoint. This is because the neuronal activity encodes the HD
vector associated with the most recently reached waypoint, which changes upon
arrival at the next waypoint. The value of this encoded HD vector can be decoded
according to the NEF principles, and the similarity of the decoded value to the
values of the actual HD vectors associated with each of the waypoints is visual-
ized in the third plot, in which larger numbers correspond to higher similarity
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Fig. 2. Routes followed by the robot in two example scenes
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Fig. 3. Model dynamics when the robot travels along an example route (waypoints:
S, start; I, intermediate; F, final)

(colors are the same as in the first plot). As expected, during the first segment
of the route, the HD vector corresponding to the start waypoint is expressed,
whereas during the second segment, the expressed HD vector corresponds to
the intermediate waypoint. The similarity is not perfect, though, because the
expressed HD vectors are noisy versions of the actual counterparts. The fourth
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plot shows modulation of the gain applied to the ALV difference. The gain,
depicted as the blue line, equals 0 during the first part of the first segment of the
route, then gradually increases to 1 in the second part of the segment, and main-
tains this value over the third part until the arrival at the intermediate waypoint,
which begins the second segment of the route, resulting in the gain dropping to
0 and the whole cycle repeating. Moreover, whenever there are no landmarks in
view, as in the case for the initial part of the route, which is indicated by the
brown line at the bottom, the gain is forced to be 0 irrespective of its current
value. In the fifth plot, the blue line represents the ALV difference, whereas the
dashed line corresponds to the threshold at which arrival at the next waypoint
is detected. During the initial part of the route with no landmarks in view, as
indicated by the brown line, the ALV difference is small because the currently
perceived ALV is a zero vector and the difference depends only on the magnitude
of the ALV associated with the next waypoint. The ALV difference reaches the
threshold around 23 s, and then increases rapidly as the ALV associated with
the final waypoint, instead of that associated with the intermediate waypoint,
starts to be used for its computation. Even though the ALV difference drops
close to the threshold around 33 s, in the middle between the intermediate and
final waypoints, there is no risk that arrival at the final waypoint could be falsely
identified because the gain applied to the ALV difference is still 0 at that point.
The sixth plot shows the output of the threshold detector: it is 0 for most of
the time and displays a sudden peak only when the ALV difference reaches the
threshold, that is when the intermediate and final waypoints are reached. The
final, seventh plot, is a raster representing activity of a sample of 50 neurons
in the action selection circuitry. As is evident, the pattern of activity of these
neurons closely matches the time course of the output of the threshold detector.

6 Discussion

Our model of desert ant navigation provides a combination of ballistic naviga-
tion based on the local vector upon arrival at a waypoint, attractor navigation
based on a simple view-matching mechanism when approaching a waypoint, and
a weighted interplay of the two in between waypoints. Moreover, all crucial pro-
cesses are implemented neurally using a SNN.

We have not implemented global vector navigation because experimental
findings suggest that when an ant expresses a local vector, expression of the
global vector is inhibited, which results in the global vector being ignored during
navigation over a familiar, cluttered environment [6].

As a view-matching mechanism, we have adopted the ALV model, which,
although parsimonious, has been successfully employed in several computational
studies on desert ant navigation and even applied to real robots [9,11]. One
problem with this model, however, is that it requires alignment of the perceived
and stored ALVs to the common reference frame, such as the external compass
reference, to allow their comparison, while experimental evidence suggests that
in ants internal rotation of images can be excluded as can body rotation for this
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purpose [9]. A remedy would be to store a set of ALVs for a particular location,
each corresponding to an image taken at a different orientation, which, in some
circumstances, seems biologically plausible. In our model this problem does not
exist because we further simplified the ALV model: ALVs associated with way-
points are stored only from the egocentric perspective of the approaching robot.
This is because waypoints are maintained in a sequence and we assume that the
local vector expressed at a previous waypoint should ensure approximately cor-
rect orientation of the robot while approaching the next waypoint, thus making
rotations unnecessary.

Utilizing distance-dependent gain control applied to the ALV difference has
made it possible to avoid the problem of perceptual aliasing, both when steering
away from a previously reached waypoint and when detecting arrival at the next
waypoint. It has also made our model consistent with experimental findings
that in desert ants landmark memories are combined with vector information in
a manner depending on how far along the route the ant is [4].

There are some limitations to our model as well. It suffers from the problems
common to models based on thresholds [11], namely it is very sensitive to the
actual choice of parameters, which so far had to be adjusted individually for each
scene. Also, fine choice of neural time constants is required to achieve desired
behavior.

In the future, the model could be extended in at least several ways: fixed
thresholds could be replaced with some adaptive alternatives to make it more
robust, more advanced view-matching mechanisms, such as the original snapshot
model, could be adopted, and finally learning could be added.
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